

European Technology & Innovation Platform for Ocean Energy

Technology Theme Webinar

Investigating novel devices before moving towards convergence of design

23 March 2018

Agenda

Moderator	Speakers	
Shona Pennock	Marco Fontana	Matthew Holland
The University of Edinburgh	University of Trento	Wave Energy Scotland

Questions and comments from the audience

WEC Based on Dielectric Elastomers Generators Status and Future Perspectives

Marco Fontana University of Trento, Italy

Investigating novel devices before moving towards convergence of design

Overview

- Dielectric Elastomer Generators: how do they work?
- Research on DEG for WEC
- Main achievements
- Techno-economic considerations
- Future perspective

DEG: How do they work?

Why DEGs for WECs?

Motivation

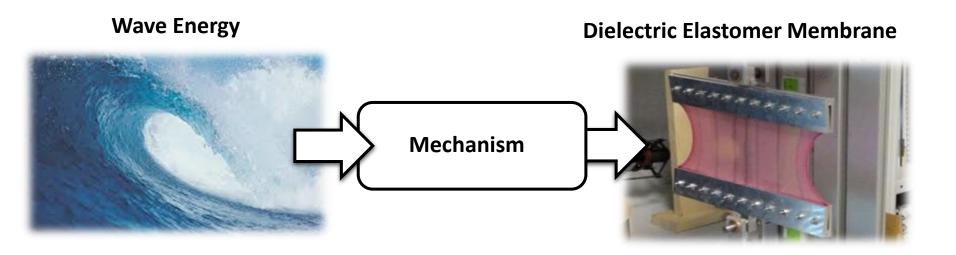
- High energy density: 2-3 kJ/kg (theoretical) 0.8kJ/kg (experim.)
- Low cost: few dollars per kg (row materials)
- Cyclical operation
- High efficiency tolerant to low speed and frequencies
- Tolerant to marine environment
- Resilient/reliable
- Light weight easy to assemble

Potentially match requirements for PTO for Wave Energy Harvesting

Projects

- **PolyWEC:** Future Emerging Technology FP7, EU Project. New mechanisms and concepts for exploiting electroactive Polymers for Wave Energy Conversion.
- WETFEET: H2020 Energy Project, Wave Energy Transition to Future by Evolution of Engineering and Technology
- WES St1&St2: Wave Energy Scotland funded project on direct contact dielectric elastomer wave energy converters.

Collaborations:

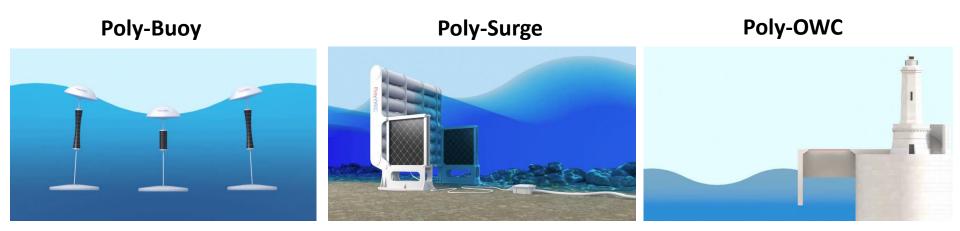

WavEC Offshore Renewables (Pt), IST Lisboa, University of Edinburgh (UK), ENEA (IT), University of Reggio Calabria (IT), Selmar (IT), Sendekia (Spain), Trellerborg (DK), INNOSEA (Fr), Teamwork Technology (DK), Plymouth University (UK), Wave Energy Scotland (UK).

Starting point

General problem

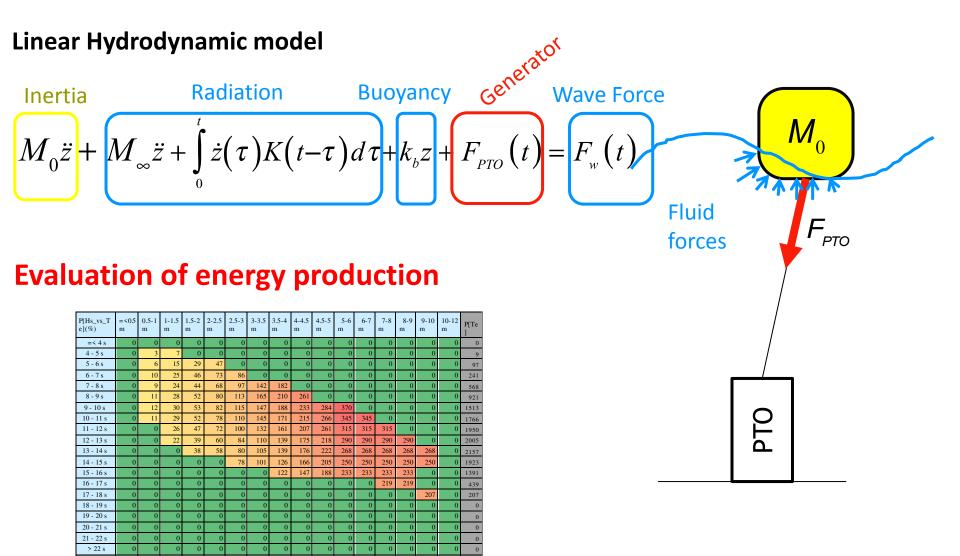
Conceive possible mechanisms to convey oscillating energy of waves into large deformation of dielectric elastomer membranes.

WEC Concepts


Motivation:

Strategies to convey oscillating energy of waves into large deformations of DE

How to model/evaluate them?


Wave-to-wire models

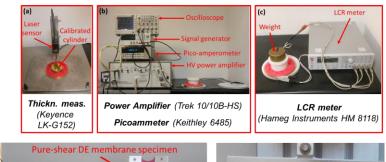
Hydrodynamic models borrowed from the wave-energy sector

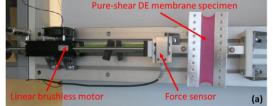
Vertechy R., Fontana M., Dielectric elastomers for wave energy harvesting, *SPIE Newsletter*, May 2015. DOI: 10.1117/2.1201505.005954.

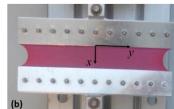
Wave Energy Converters Numerical Models

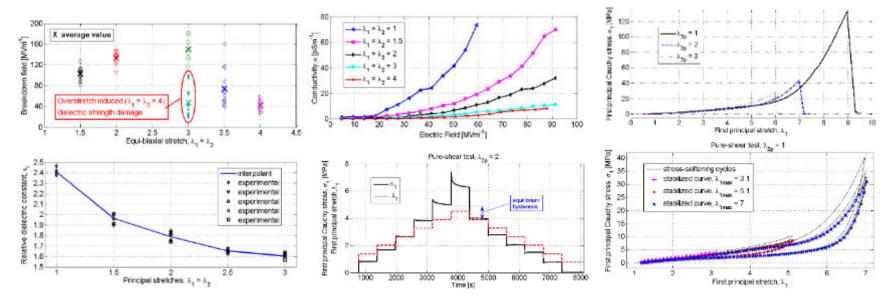
[1] Moretti G., **Fontana M.**, Vertechy R., Model-Based Design and Optimization of a Dielectric Elastomer Power Take-Off for Oscillating Wave Surge Energy Converters. Meccanica, 50 (11), 2015.

61 206 399 618 863 1047 1438 1579 1644 2070 1700 1575 126


Materials Characterization

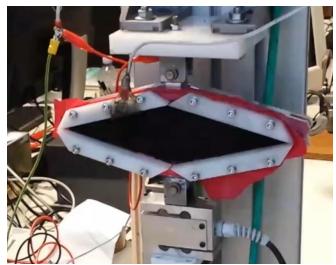

Motivation


- Identify optimal materials
- Characterize material response (analysis and design)


Methodology

 Develop a procedure for comprehensive characterization of DE

Vertechy R., Fontana M. Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD) 2015, (March 9, 2015).


Berselli, G., Vertechy, R., Fontana, M., Pellicciari, M. In SMASIS 2014. ASME.

Vertechy R., Fontana M., Stiubianu G., Cazacu M Proc. SPIE 9056, (EAPAD) 2014, 90561R (March 8, 2014).

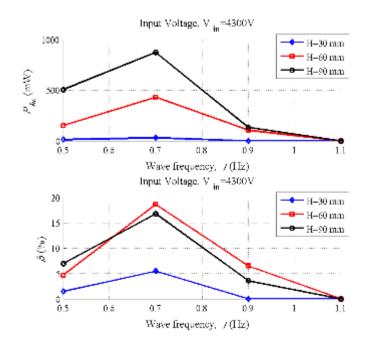
Test-bench experiments (Dry-run tests)

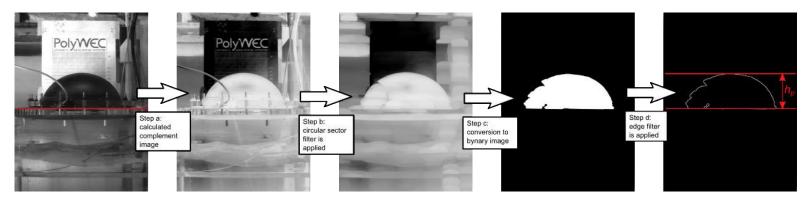
Motivation:

- 1.Verify the simplified (reduced) models assumed for the DEG against experimental measures;
- 2.Implement in laboratory set-up simulation of the controller through Hardware in the loop (HIL) simulations;

Poly-Surge test bench:DE: OPPO Band Red 8012 (NR)Electrodes: Carbon grease

Poly-OWC test bench:DE: VHB Acrylic (NR)Electrodes: Carbon grease

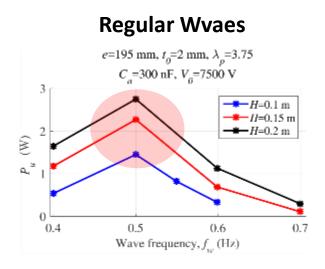

[1] Moretti G., Vertechy R., **Fontana M.**, Parallelogram-shaped dielectric elastomer generators: analytical model and experimental validation Journal of Intelligent Material Systems and Structures, 26, 2015.


[2] Moretti G., Papini Rosati G.P., Vertechy R., **Fontana M.**; Hardware in the loop simulation of a dielectric elastomer generator for oscillating water column wave energy converters, in Proceedings of OCEANS 2015 - Genova, 18-21 May 2015

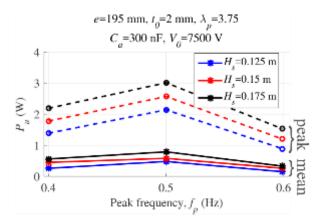
Poly-OWC Wave-flume

Max Power: **0.9W** (*H*=4.5cm *f*=0.7Hz) <u>Energy density: 110J/kg (w-t-w eff.: 20%)</u> full-scale equiv: >300kW (*H*=1.8m *T*=9s)



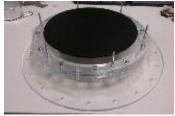

[1 Moretti, G., M.Righi, Forehand D. Fontana M. Wave tank tests of a wave energy converter based on dielectric elastomer generators (submitted).

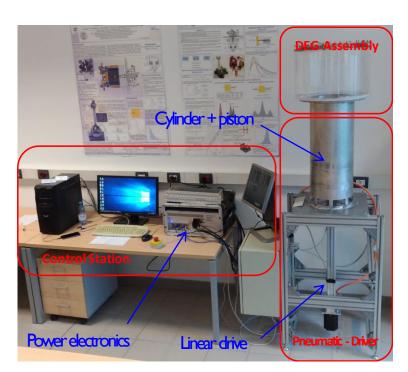
Poly-OWC Flowave Tank


Scale 1:15 / 1:25

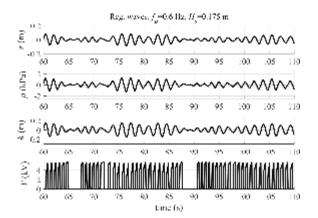
- 2 W average
- 3.7W peak ouput (300-600kW in real scale)

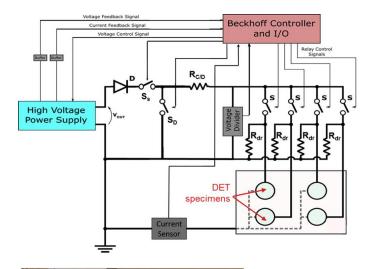
Irregular Waves

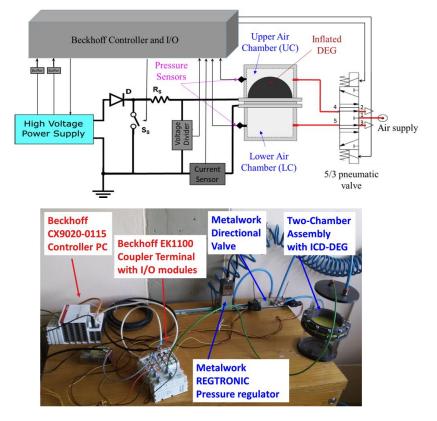


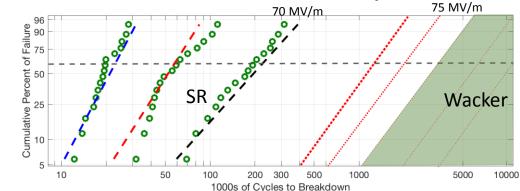

Manufacturing and HIL tests







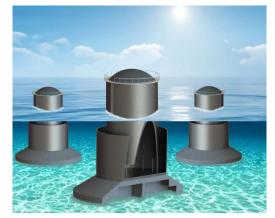

Irregular

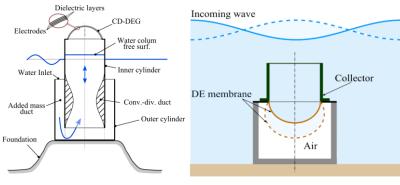

Long term characterization

Different materials comparison

Techno Economic Analysis

Analysis

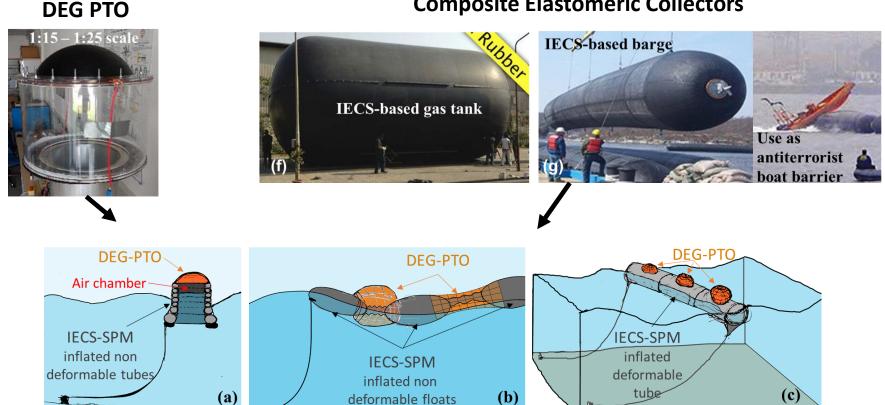

- Devices: different type and arrangements
- Scales: form 150-500kW per unit
- Wave climate


Main outcomes:

- <u>Huge</u> reduction in the PTO costs;
- Capex costs reduced
- Promising LCOE

Uncertainties:

- Long term duration (preliminary promising results)
- Manufacturing process



Future perspective

Fully elastomeric WEC

Combination of DEG-PTO with collectors made of low-cost elastomeric composite components.

Composite Elastomeric Collectors

Conclusions

- DEG based WEC investigation
- Validation of the feasibility
- Summary of results
- Convergence toward a new device
- Future
 - Fully elastomeric WEC
 - Spin-out company
 - Investments on smaller scale application

Acknowledgement:

Univ. of Bologna, Unv. Of Edinburgh, WavEC, PPIMC, Scuola Superiore Sant'Anna, Univ. of Reggio Calabria

Thank you! Questions ?

More info e-mail: marco.fontana-2@unitn.it

Preliminary sea-trials at University of Reggio Calabria

Novel Wave Energy Converter Programme Matthew Holland

ETIP Webinar 23rd March 2018

□ WES development programmes

□ Novel WEC objectives

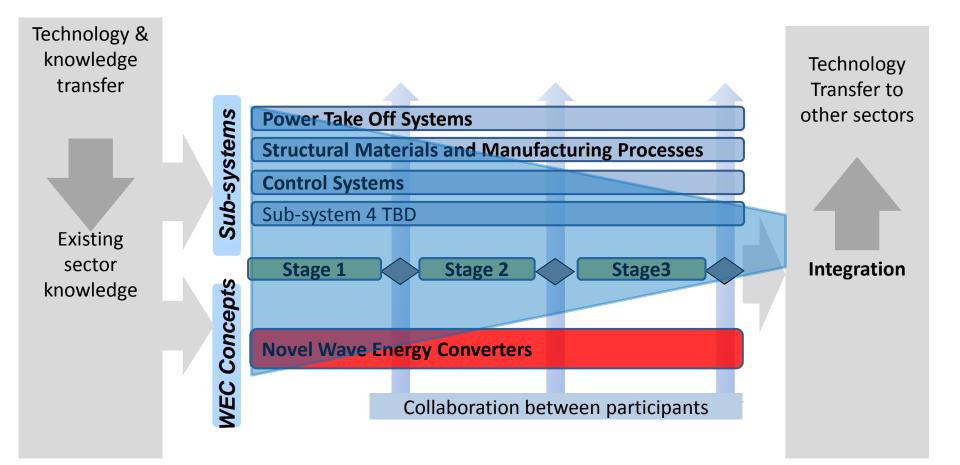
□ Case Study – Novel WEC convergence

□ Next steps

Overview



□ How is WES encouraging technical convergence?


Structured development programme based on sector experience and learning

- Programme entry open to all
- Awards to only most techno-economically promising
- 100% funding
- Most promising technologies successful at stage gates
- Promote use of industry best practice IEC, commercial guidelines/standards, etc

WES Activities

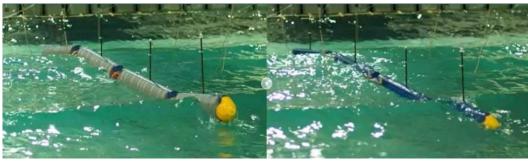
□ Objectives:

- Support the development of prime mover technologies which will have significant impact
- Address technical risks and challenges
- Understand device "–ilities"
- Build on industry learning to date
- Integrate representative subsystems
- Testing at an appropriate scale in representative environment in 3-5 years

...leading to ...

- Step change in Levelised Cost of Energy (LCOE) goal <£150/MWh
- Affordable, targeted de-risking prior to FOAK full-scale

Novel WEC Stage 1 Participants


4CE - Attenuator

Albatern – Point Absorber/Attenuator

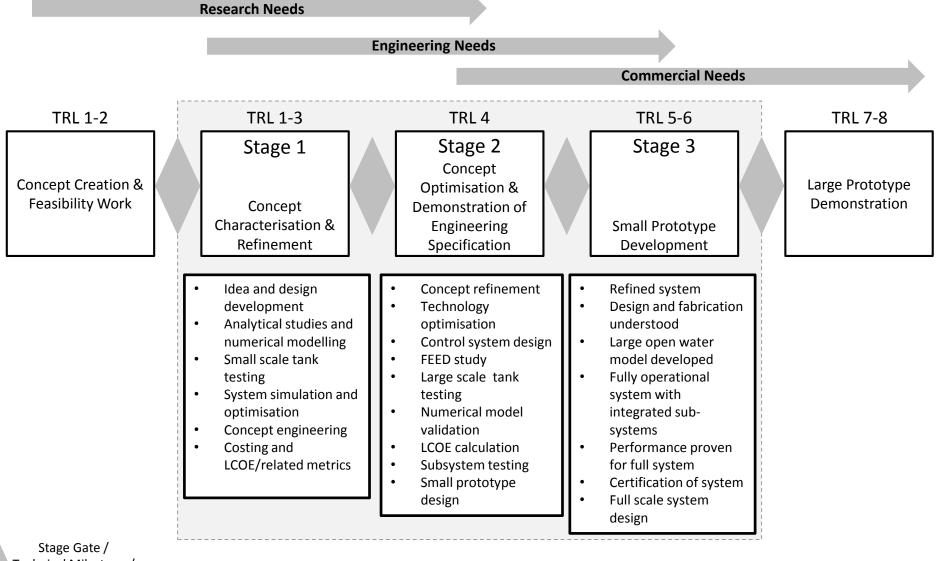
Quoceant – Multi-body Attenuator with Inflatable Volume

Mocean - Attenuator

Joules – Floating OWC

Checkmate – Bulge Wave

Zyba – Floating Surge Converter



AWS – Submerged Pressure Differential

Novel WEC Programme Pathway

Technical Milestone / Defined Performance

Stage 1 – Performance baseline Stage 2 – Optimisation/comparison

Stage 3 – Validation of modelling

□ Evolution of testing objectives:

□ Why do mandatory testing?

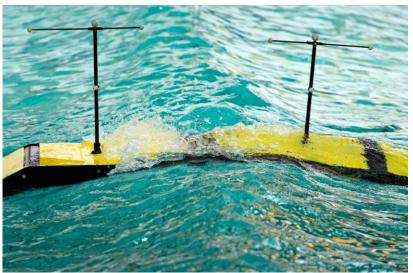
- Standardised conditions give comparable results
- Compliant with best practice
- Appropriate for stage of device development
- Representative of generic Scottish wave climate
- High % of power matrix covered
- Comparative conditions to US Wave Energy Prize

Testing validated and observed

Process of selecting which technologies continue in the programme

- Consistent technical assessment
- Engineering design reviews
 - Stage 1 3rd Party Verification of testing
 - Stage 2 Third Party Appraisals
 - Stage 3 Third Party Appraisals and Certification
- Application form proposed scope for next stage

□ "Survival of the fittest"



Novel WEC Stage 2 Participants

4CE - Attenuator

Mocean - Attenuator

Checkmate – Bulge Wave

AWS – Submerged Pressure Differential

□ NWEC Stage 3 transition – Q4 2018

- Programme convergence
- Systems integration
- Recognition of system/subsystem requirements

□ Long term goal – commercial-scale markets

https://www.offshorewind.biz/wp-content/uploads/2016/11/photo-of-the-day-port-of-esbjerg-displays-offshore-wind-bounty-768x326.jpg

Questions?

matthew.holland@hient.co.uk library.waveenergyscotland.co.uk

European Technology & Innovation Platform for Ocean Energy

Technology Theme Webinar

Investigating novel devices before moving towards convergence of design

23 March 2018

ETIP mailing list

U						~
5 Events - ETIPOcean	×			-		×
÷ → C ☆ 🗎	Secure https://www.etipocean.eu/events/?past=1			G	1 \$	-
Wed. March 21, 2018				I`m looking for	٩	*
S ETIPO	CEAN					
About	News Resources Events		Join us	⊌ in	v	
Events	Home Events					
	Past events Upcoming e	vents				
TOP	Webinar: Maintaining grant funding for early TRL technologies 27 February 2018		Archive			
We Ima	© 27/02/2018	\leq	March 2018			
			February 2018			
	Wahiram Davalanian and implementing autimization to de		January 2018			
	Webinar: Developing and implementing optimisation tools Image courtesy of Exceedence		November 2017			
	© 29/01/2018	<	September 2017			
	9 23/01/2010	~	July 2017			
			June 2017 May 2017			
-	Webinar: Adaptive Management Systems – Don't make the same April 2017					
6	mistakes twice!		March 2017			
	13 December 2017		February 2017			÷
						1.25

Staying in Touch

www.etipocean.eu

https://www.linkedin.com/in/etip-ocean-316262133/

https://vimeo.com/channels/1210250

