

Monitoring benthic communities in the OE sector: Seabed integrity and Biofouling

Pedro Vinagre, PhD

May 19th, ETIP Ocean Webinar

Ocean Energy

- Diversity of technologies and structures
 - Wave
 - Tidal and ocean currents
 - Ocean thermal energy (OTEC)
 - Salinity and temperature gradients
- Different methods of energy capture
 - Attenuators, point absorbers, Osc. Wave Surge converters, etc.
- Different structures according to location
 - Onshore, nearshore, offshore

Different impacts (and magnitude)

Potential impacts from OE

- **Offshore activities** (eg, mining, pilling, sand extraction) •
- **Equipment and structures** (eg, foundations, moorings, anchoring) •
- Moving parts and movement of anchor lines/cables •
 - Hydrodynamics
 - Physical Change
 - Changes in benthic habitats and communities
- Artificial reef effects
 - Biofouling
 - Enhancement of local biodiversity, sanctuaries for protected/commercial species
 - Propagation of non-native species

Noise ٠

- **Electromagnetic fields** ٠
- **Pollution** (chemical pollution, litter)
- Other impacts •

(eg, positive socioeconomic impacts)

Seabed integrity

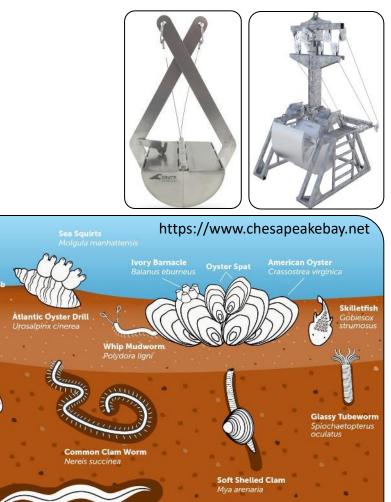
Biofouling

٠

Seabed integrity

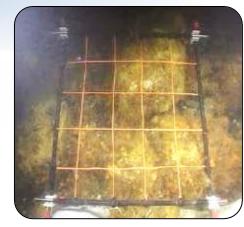
- Characteristics (physical, chemical and biological) which determine the structure and functioning of habitats and communities in the sea bottom
- Regarded in different legislative frameworks
 - MSFD, WFD, HD, OSPAR, HELCOM, etc.
- Main challenges to seabed monitoring in the OE
 - Range of human pressures and impacts
 - Need for frequent and long-term monitoring
 - Benthic communities are naturally variable (eg, between seasons)
 - Ascertain changes owed to anthropogenic impacts
 - Different legislation applicable among countries

Seabed monitoring


- 1) Desk-based work
 - Marine dynamics, seabed, marine habitats and organisms
 - Allow faster and more objective activities at sea
- 2) Sampling Pre-construction, Operation, Decommissioning
 - BACI design
 - Inside and outside the projects' area
 - Stratified, Single-spot, Grid and/or Transect sampling in replicates
 - Seabed (including archaeological features) and habitat characterization
 - Active acoustics
 - ADCP, Side-scan SONAR, Multibeam SONAR
 - Divers, ROV, UAV

Seabed characterization

- 2) Sampling Pre-construction, Operation, Decommissioning
 - Sediment and communities sampling
 - Box-corer, grab sampling and trawling nets (sandy bottom)
 - Scrape sampling (rocky bottom)
 - Divers/ROV
 - Sediment granulometry and contents
 - Community structure, presence of NNS



Red Ribbon Micrura leidv

Seabed characterization

- 3) Samples processing
 - Analysis of <u>videos/photos</u>
 - Sediment <u>granulometry</u> analysis
 - Sediment <u>contents</u> analysis
 - Organic matter, chlorophylls, contaminants
 - Benthic communities analysis
 - Sieve through a **1 mm** mesh sieve
 - Identify, Count Density (ind m⁻²), Weight Biomass (g FW/DW/AFDW m⁻²) and Measure (mm, cm) organisms
 - Total density and biomass, Species density and biomass, Number of species, Diversity indices (based on density, biomass, or both), Tolerant/Sensitive species (eg AMBI index)
- 4) Data analysis
 - Descriptive and Statistical analysis

Water quality

- Parameters measurement
 - Multiparameter probe
 - Salinity/conductivity
 - Temperature
 - Dissolved Oxygen
 - Total Chlorophyll

YSI multiparameter probe

- Seawater Sampling
 - Recover water as relevant
 - Enough volume for analysis
 - Adequate depths
 - Keep in dark containers in cold
 - Water analysis
 - Nutrients
 - Chlorophyll a
 - Particulate Organic Matter
 - Turbidity
 - Oils and Greases
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Metals

Biofouling

• Assemblages of fauna and flora growing on artificial, man-made, structures

(e.g., ships' hull, buoys, MRE equipment)

- > 4000 organisms accounted as biofouling
- Microfouling e.g., bacteria, fungi, microalgae
- Macrofouling
- Soft-fouling e.g., non-calcareous algae, anemones, hydroids

■ Hard-fouling – e.g., barnacles,

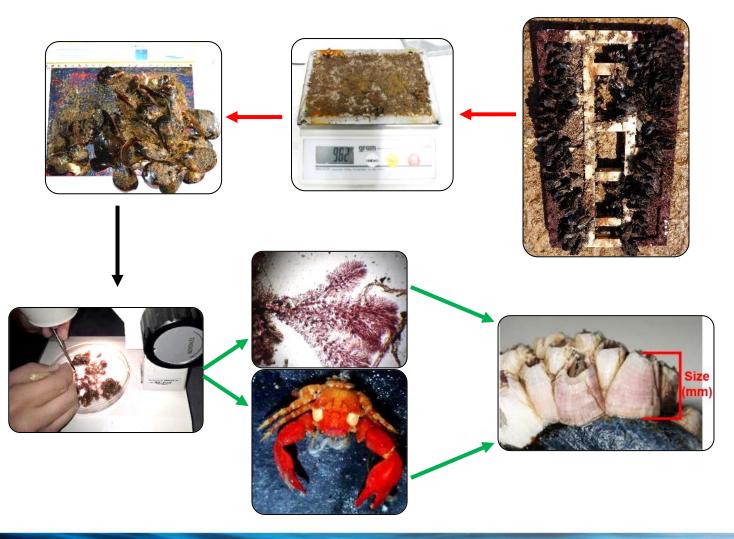
mussels, calcareous tubeworms

www.wavec.org

Stepwise assessment

1. Activities at sea

- Biofouling sampling
 - Scrapings/Removable samples
 - Video (and photographic monitoring)



Stepwise biofouling assessment

2. Samples processing

- Samples
- Biofouling weight (eg, fresh weight: <u>g FW m⁻²</u>)
- Biofouling thickness (mm)
- Biofouling coverage (%)
- Biofouling communities
- Characterization
 - Composition, Number of species
 - Abundance
 - Density (ind m⁻²)
 - Biomass (g FW m⁻²)
 - Coverage (%) of species/groups
- Hard-fouling
 - Size (height/length; mm) + the above parameters

Stepwise biofouling assessment

3. Data analysis

i) Descriptive analysis

- Seawater parameters and how they affect biofouling
- Which groups (eg, crustaceans, bivalves, gastropods, annelids)
- Number of species (eg, total, within group)
- **Dominant and rare species** (abundance, weight, size, coverage)
- Non-native species

ii) Statistical analysis

- **Differences** among sites, depths, seasons, substrates (eg, PERMANOVA)
- **Species most contributing** to the differences (e.g., SIMPER)
- Seawater parameters associated to the differences (eg, PCO)

iii) Ecological indices

- Diversity/Equitability
 - Margalef

 $1 - \Sigma \frac{[Ai(Ai-1)]}{[A(A-1)]}$

1 _ E (pi log2 pi)

S - 1

InN

- Shannon-Wiener
- Simpson

Impact of biofouling

- Artificial structures = Artificial reefs
 - ✓ Promoters of ecosystem diversity and function
 - ✓ Sactuaries for commercial and/or protected species
- Contribute to the propagation of non-native species (NNS)
 - Impacts biodiversity, habitats and/or ecological processes
 - Economic threats (eg, species of commercial interest)
- Biofouling
 - Issues related with use of antifouling (toxic) solutions

- Alter hydrodynamic properties of equipment
 - Add substantial weight and thickness/roughness
 - Increased drag, loss of performance/functionality
- Cause damage and induce/accelerate corrosion
 - Direct damage (eg, from boring organisms)
 - Damage by waves/currents (eg, pulling kelp or bryozoans)
 - Damage during maintenance activities (eg, when removing barnacles)
 - Expose surfaces to seawater -> Corrosion
 - Facilitate MIC (Microbiologically Influenced Corrosion)
- Increase maintenance frequency
- Increased costs, downtime periods and loss in revenue

European Biofouling Database (Vinagre et al., 2020; in preparation)

- Knowledge on biofouling not sufficiently transferred across the MRE sector (Loxton et al., 2017)
- Biofouling data is dispersed, and many times not standardized
 - Improper design of devices/components
 - Improper O & M plans
 - Hence, increased costs
- Allow the MRE sector (and others) a more informed and quick decision
 - Provide overview of biofouling in a specific area
 - Support site selection, frequency and type of maintenance operations
 - Support development of biosecurity risk management plans

European Biofouling Database (Vinagre et al., 2020)

- i. Realm, Province and Ecoregion (Spalding et al. 2007): Overview of countries encompassed in the mapping (e.g., 'cold' versus 'warm' regions)
 - ✓ 9 Ecoregions
- ii. Country and Site: Country (e.g., Portugal, Netherlands) where biofouling samples were taken
 ✓ 24 Countries
- iii. Distance to shore: Distance (km) between the sampled site and the closest land
 ✓ 0.1 195 Km
- iv. Type of equipment/structure: MRE; Oil & Gas, deliberate artificial reefs, test panels
- v. Period of immersion: Period (months, years) during which the biofouling could grow (i.e., from the equipment deployment until data was gathered)
 - ✓ 1 month 39 years

European Biofouling Database (Vinagre et al., 2020)

- vi. Depth: Depth (m) at which data was retrieved
 - ✓ Surface 90 m

vii. Temperature and wave height: Temperature and wave height data in the area sampled

- a. data recovered from the cited work
- b. data not presented by the authors -> data retrieved from WindGuru (www.windguru.cz) for that site (or the closest area available) and fouling period (mean ± standard deviation)
- c. no fouling period is mentioned by the authors, or if WindGuru data does not cover the fouling period -> last two years of available data retrieved from WindGuru (mean ± standard deviation)

viii. Biofouling data: Qualitative and quantitative information on samples and on biofoulers including NNS

- Samples thickness (mm) and weight (g FW/DW/AFDW m⁻²)
- Biofoulers size (length or height; mm) and weight (g FW/DW/AFDW m⁻²)

vii. Reference: Authors who reported the data

	Biofouling Database
	Name *
oceanic	
	Address *
HOME	City *
OCEANIC PROJECT	State / Province / Region *
WORKPLAN	
PARTNERS	Email *
NEWS AND EVENTS	
VIDEOS	Company *
BIOFOULING DATABASE	Sector *
CONTACTS	
CONTACTS	Using the Database
	Comercial
	Comments *
	Send

• Updated frequently

- Data from published papers, reports and projects
- Next step
 - Funding to make it an Interactive Map
- Download from

www.oceanic-project.eu/biofouling-database

• Soon moved to WavEC website

https://www.wavec.org

...to Summarize

- Many and diverse OE technologies and structures
 - Knowledge gaps in the <u>interaction between OE and Environment</u>
- Seabed monitoring
 - Very challenging, and time and cost demanding
 - Long-term monitoring (years) (at the devices and in reference areas) to understand the interactions
 - Monitoring may require <u>temporary shutdown</u> of devices
 - Requires <u>specific logistics</u>, and monitoring techniques and parameters
 - Depends on which parameters intended and the aim (EIA, ecological studies, ...)
 - Depends on <u>legislation</u> applicable (variable between countries)
 - Develop standardized approaches applicable globally
 - Allow data comparability
 - Increase understanding of OE effects on the environment

...to Summarize

- Biofouling
 - Monitoring needed
 - Standardize methods and parameters
 - More precise modelling
 - Weight and thickness/size are preferable
 - Provide more realistic information about the assemblages
 - More realist understanding of impacts (eg, loading, drag, damage)

Department of Marine Environment and Public Policies

Teresa Simas (teresa@wavec.org) Pedro Vinagre (pedro.vinagre@wavec.org) Erica Cruz (erica.cruz@wavec.org) Maria Apolónia (maria.apolonia@wavec.org)

Available for discussions and collaborations!

Offshore Renewables

Edifício Diogo Cão
 Doca de Alcântara norte
 1350-352 Lisboa |Portugal
 T: +351 218482 655
 www.wavec.org

FOLLOW US