

Contents

Introduction

Opportunities and Needs in Wave Energy

Wave Energy Context

Challenge Areas and Specific Priority Topics

Next steps

Introduction

Strategic Research and Innovation Agenda (SRIA)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 826033.

Objectives

- A reference document for the whole ocean energy sector and specifically for **public funding organisations** (EC, Member States and Regional Agencies) with the aim of inspiring research calls.
- Updates key priority challenge areas for research, technology development and innovation
- Defines specific objectives and actions to carve the path towards Ocean Energy commercialisation
- Developed in close cooperation with sector stakeholders
- To be published in January-February 2020

Strategic Research and Innovation Agenda (SRIA)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 826033.

Methodology

- Formation of Technology Working Group
- Identification of priority technology development topics
- A series of webinars and workshops to **collect feedback**:
 - Validate the identification of priority areas (June)
 - Validate the SRIA structure (September)
 - Validate the draft contents of the SRIA (November, December)
- Final document to be approved by the EC (Dec-Jan)
- Public version, including editing and formatting (Jan-Feb)
- Further webinars and workshops to subsequently exchange on the identified priority topics (2020-2021)

Today's objective

- The purpose of this webinar is to present a preliminary content of the Strategic Research and Innovation Agenda focused on wave energy to get feedback from ETIP Ocean members and to ensure it covers the sector needs
- **Why** we are bringing this work to the ETIP Ocean members?
 - The ETIP Ocean members has a broad, diverse base of knowledge and experience with which to validate the SRIA

- What we need from you (<u>after the webinar</u>)

 You will receive an email directly after the webinar with this presentation, a draft version of the SRIA and a feedback questionnaire.
 - Please review the draft SRIA.
 - Please complete the questionnaire by 12 December.

Feedback questionnaire

Please take a look at the Priority Topics for your area of expertise under each Challenge Area and answer these questions:									
Please indicate which Priority Topic you refer to:		Mark your answer with an X	Justification for your answer						
1. Are the proposed actions sufficient	Yes								
to cover the needs of the sector?	No								
2. Is the proposed TRL realistic?	Realistic								
	Too high								
	Too low								
3. Is the indicated budget sufficient to	Sufficient								
tackle this challenge? Please choose	More actions needed								
all that apply.	Bigger actions needed								
	Smaller actions								
	needed								
	Fewer actions needed								

Table of Contents

Foreword

- 1. Ocean Energy Opportunities and Needs
- 2. Description of Technology Priority Areas
 - 2.1 Design and Validation of Ocean Energy Devices
 - 2.2 Balance of Plant
 - 2.3 Logistics and Marine Operations
 - 2.4 Integration in the Energy System
 - 2.5 Data Collection, Analysis and Modelling Tools
 - 2.6 Cross-cutting Issues
- 4. Funding Research and Innovation
- 4. Future Outlook
- 5. References

Annexes

SRIA Structure

- Foreword by the Steering Committee chairperson
- Ocean energy context
 - Brief state of the art on ocean energy technologies
 - Main opportunities for the ocean energy sector
 - Needs and obstacles to overcome
- Description of the prioritised Challenge Areas
 - Selected **priority topics**, their applicability and scope
 - Actions, expected impact, TRL and budget required
- Instruments for funding research & innovation actions
- Future Outlook, i.e. indications for future updates
- Annex: Summary of the prioritisation methodology

Opportunities and Needs in Wave Energy

Opportunities

- Highly **predictable** energy to complement other renewables
- 100 GW of ocean energy could meet 10% of Europe's energy needs by 2050
- 400,000 skilled jobs and economic development in costal areas
- European **export leadership** of a market worth €53bn/year
- Security of supply and avoided imports bill for fossil fuels
- Benefits for the EU islands (e.g. local source, cheaper, little or no visual impact)

Needs

- **Financing innovation** across the stages of development
- Real sea demonstration to remove technology risk, lower capital costs and provide market visibility
- Financial instruments to help projects reach financial close.
- Reducing costs through economies of scale
- Streamlining licensing and consenting processes

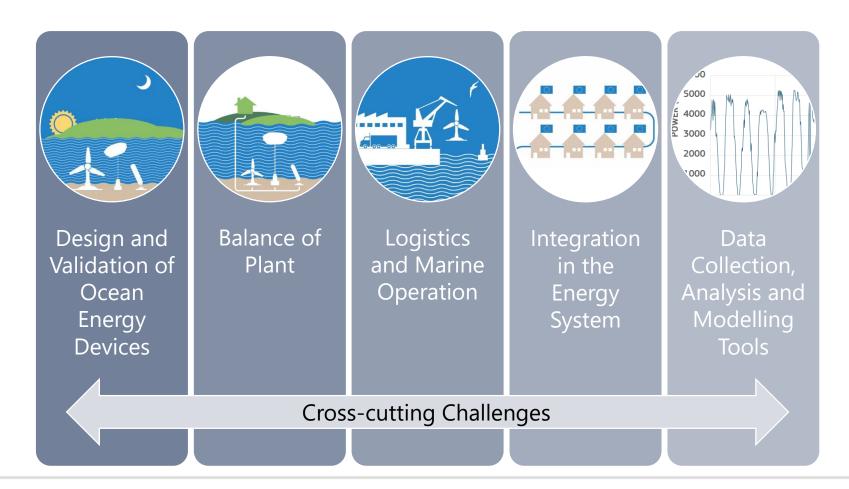
Wave Energy Context

Brief State-of-the Art

- Wave energy remains at an earlier stage
 of development than other renewable
 energy technologies, with scale and full size prototypes undergoing testing at sea.
- Shoreline devices such as those in breakwaters have been reliably operating for several years, but costs need to come down to allow commercial deployment in some niche markets
- Overall there is limited experience with deployments and scarce performance data available.

- Wave energy has not achieved technological convergence. However, convergence may still result in several coexisting designs.
- Novel devices are still being developed and alternative generation methods investigated.
- Phased development has replaced higher-risk large-scale prototype testing
- An **industrial supply chain** has not been consolidated yet.

Challenge Areas and Specific Priority Topics



Challenge Areas: Research and Innovation Priorities

Description of each Challenge Area

- General description of the challenge area
 - Main challenges
 - Very brief state of the art
 - Expected impact of the whole challenge area

Specific priority topics:

- Applicability to wave/tidal/other
- Scope of the specific priority technology development topic
- Actions
- Expected impact
- Funding instrument adequacy: TRL, budget required

Design and validation of wave energy devices (1)

Scope:

- Research, design, development and validation of devices and subsystems.
- Real sea testing provides invaluable learnings and can lead to validating the technology.
- Control strategies can reduce the impact of the stochastic nature of the input.
- Demonstration of the potential benefits of innovative materials from other sectors.
- Phased development of novel devices and alternative generation methods.

Expected impact:

- Improve performance, reliability and survivability.
- Reduce fatigue, unexpected failures, unplanned maintenance and thus increase availability.
- Achieve design convergence and simplification to lower maintenance costs.
- Identify breakthrough innovations with very high potential for cost reduction.
- Contribute to LCOE reduction approaching SET-Plan targets.

Devices

Structure and Prime Mover

PTO and Control

Design and validation of wave energy devices (2)

	TRL			Size/no. of Actions		
Specific priority topics	Low	Medium	High	Small	Medium	Large
Demonstration of existing ocean energy devices						
to gain experience in real sea conditions			9			
Improvement and demonstration of PTO and						
control systems		0	9			
Application of material innovations from other						
sectors			D			
Stage-gate development of novel wave energy devices with alternative generation methods	②	S				

Small: <2M€

Medium: 2 to 8 M€

Large: > 8M€

A few actions (2-3)

Around 5 actions

Balance of plant (1)

Scope:

- Physical balance of plant such as device mooring and foundation and electrical balance of plant including cabling, substations and connections.
- Real sea operating experience to validate the solutions.
- Optimisation and standardisation of designs.
- Innovative concepts (e.g. combined mooring and electrical connectors, wet- and/or dry mate connectors tailored to ocean energy applications)

• Expected impact:

- Increase reliability, availability and survivability of solutions.
- Improve installation, operation and maintenance of devices
- Reduce uncertainties and risks.
- Contribute to LCOE reduction approaching SET-Plan targets.

Foundations and Moorings

Connections

Balance of plant (2)

	TRL			Size/no. of Actions		
Specific priority topics	Low	Medium	High	Small	Medium	Large
Advanced mooring and connection systems for floating ocean energy devices.		•				
Improvement and demonstration of foundations and connection systems for bottom-fixed ocean energy devices.		S	S			

Small: <2M€

Medium: 2 to 8 M€

Large: > 8M€

A few actions (2-3)

Around 5 actions

Logistics & Marine Operations (1)

Scope:

- Technology development and demonstration of marine operations related to installation, operation, maintenance and decommissioning of both single devices and arrays.
- Adapting good practices from other sectors, developing bespoke operations and tools, and documenting and sharing experience.
- Applying latest sensor technology and recent advances in condition monitoring.
- Predictive maintenance techniques.

• Expected impact:

- Improve know-how and data available to industry and future projects.
- Reduce uncertainties, risks and costs.
- Improve survivability by early detection of failure risk.
- Contribute to LCOE reduction according to SET-Plan targets.

Installation

Operations and Maintenance

Logistics & Marine Operations (2)

	TRL			Size/no. of Actions		
Specific priority topics	Low	Medium	High	Small	Medium	Large
Optimisation of maritime logistics and operations		②	(
Instrumentation for condition monitoring and predictive maintenance including digital tools		Ø	Ø			

Small: <2M€

Medium: 2 to 8 M€

Large: > 8M€

A few actions (2-3)

Around 5 actions

Integration in the Energy System (1)

Scope:

- Knowledge generation about barriers and benefits of the integration of wave energy arrays into the European energy system (continental grid and islands).
- Identifying niche applications for first near-commercial deployment of wave energy.
- Demonstration of grid-level system balancing benefits.
- Combining multiple renewable energy sources to be included.

Expected impact:

- De-risking commercial development of wave energy.
- Quantify benefits and additional value to the grid.
- Identify remaining issues on pathway to grid-scale integration (e.g. power quality, predictability, intermittency, market prices fluctuations, and costs of curtailment/under-production).
- Contribute to LCOE reduction according to SET-Plan targets.

Arrays

Whole System

Integration in the Energy System (2)

	TRL			Size/no. of Actions		
Specific priority topics	Low	Medium	High	Small	Medium	Large
Developing and demonstrating near-commercial application of ocean energy in niche markets			Ø			
Quantifying and demonstrating grid-scale benefits of ocean energy			②			

Small: <2M€

Medium: 2 to 8 M€

Large: > 8M€

A few actions (2-3)

Around 5 actions

Data collection, analysis and modelling tools (1)

Scope:

- Generation of information and tools that are critical for other challenge areas, and facilitating information sharing through standardised data management and storage.
- Near-field and immediate real-time wave forecasting for adaptive and predictive control
 of devices.
- New technologies allowing better collection, analysis and processing of large datasets

Expected impact:

- Improve performance, reliability, availability and survivability through better designs and more efficient operations.
- Access to open-data repositories
- Contribute to LCOE reduction according to SET-Plan targets.

Energy Yield

Design and Optimisation Tools

Data collection, analysis and modelling tools (2)

	TRL			Size/no. of Actions		
Specific priority topics	Low	Medium	High	Small	Medium	Large
Marine observation, modelling and forecasting to optimize design and operation of ocean energy devices		((
Open-data repository for ocean energy			S			

Small: <2M€

Medium: 2 to 8 M€

Large: > 8M€

A few actions (2-3)

Around 5 actions

Cross-cutting Challenges (1)

Scope:

- Demonstrating and quantifying environmental and socio-economic benefits to better inform policy and financial decisions.
- Dissemination of good practices to reduce or eliminate negative environmental impacts.
- Quantify the job creation potential of various scenarios of wave energy deployments.
- Consolidation of guidelines, specifications and standards with experience from the learning from laboratory testing and real-case applications.

Expected impact:

- Reduced negative environmental impacts.
- Increase employment and biodiversity benefits of wave energy deployment (longer term).
- Contribute to the establishment of widely accepted standards.
- Increase insurability and bankability of projects.

Environment and socio-economics

Standardisation

Cross-cutting Challenges (2)

	TRL			Size/no. of Actions		
Specific priority topics	Low	Medium	High	Small	Medium	Large
Improvement of the environmental and socioeconomic impacts of ocean energy		②	②			
Standardisation & certification			②			

Small: <2M€

Medium: 2 to 8 M€

Large: > 8M€

A few actions (2-3)

Around 5 actions

Next steps



Next steps

You will receive an email directly after the webinar with this presentation, a draft version of the SRIA and a feedback questionnaire.

- 1. Please review the draft SRIA.
- 2. Please complete the questionnaire by 12 December.

Thank you – Questions?

Pablo Ruiz-Minguela, Joannès Berque, Jose Luis Villate – TECNALIA

