

5 ETIPOCEAN

European Technology & Innovation Platform for Ocean Energy

ETIP Ocean & DTOceanPlus Webinar:

Digital Representation of Standard Data Formats for Ocean Energy Systems

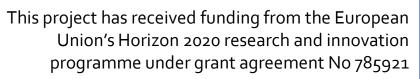
You can find the presentations and the webinar recording at: etipocean.eu and dtoceanplus.eu

Advanced Design Tools for Ocean Energy Systems Innovation, Development and Deployment

Webinar

Digital Representation of Standard Data Formats for Ocean Energy Systems

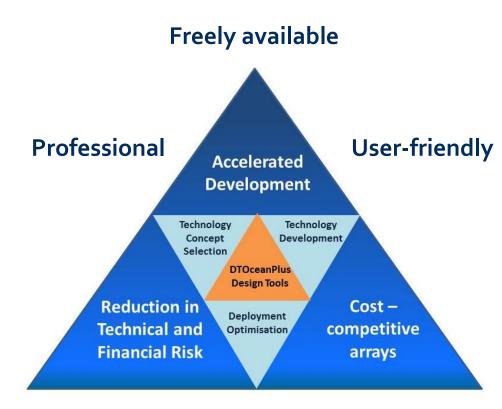
Vincenzo Nava, Pablo Ruiz-Minguela Tecnalia, 2020



Contents

1. Introduction to DTOceanPlus

2. Standard data formats for OES


3. Summary and future work

4. Reference material

1. Introduction to DTOceanPlus (I)

- An integrated open-source suite of design tools to support the entire innovation and development process for ocean energy subsystems, devices and arrays.
- Continuing the development of DTOcean, which produced a 1st generation of freely available, open-source design tools for wave and tidal energy arrays.
- Its operational capabilities and value will be demonstrated (TRL6) with data from real case technology projects.

Used at different levels of complexity and aggregation

1. Introduction to DTOceanPlus (II)

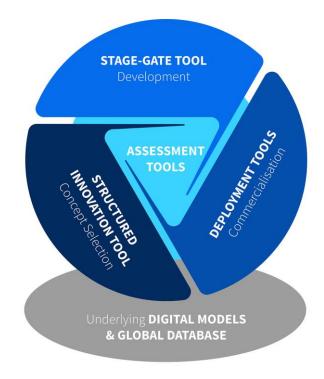
Structured Innovation Tool

For concept creation, selection and design.

Stage Gate Tool

Assisting decision-making through the use of metrics to measure, assess and guide technology development.

• **Deployment Tools**: Site characterisation, Energy capture, Energy transformation, Energy delivery, Station-keeping, Logistics and Marine Operations

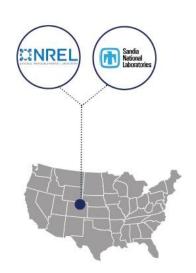

Supporting optimal device and array deployment.

• Assessment Tools: Performance & Energy Yield, RAMS, Lifetime Costs, Environmental and Social Acceptance

Providing objective information to the developer or investor on the suitability of a technology and project.

Common digital models – Digital Representation

Standard framework for the description of sub-systems, devices and arrays to allow sharing of design information.



1. Introduction to DTOceanPlus (III)

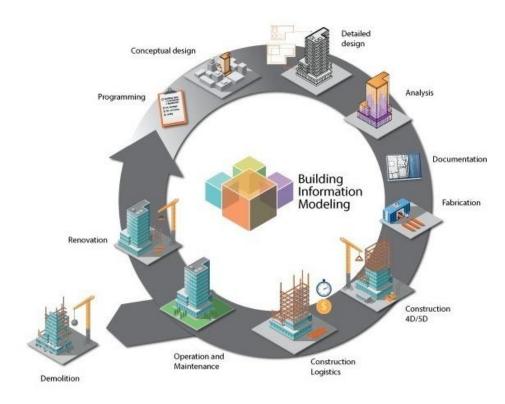
• A 3-year EU project (May 2018 - April 2021) with a total budget of 8 M€.

• Multidisciplinary team of 16 partners from 7 EU countries, with the collaboration of 2 leading research laboratories from the USA.

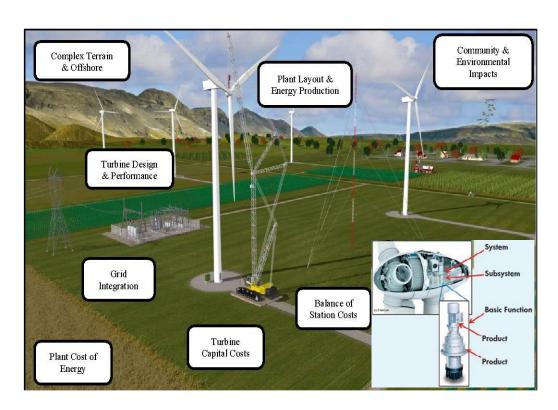
2. Standard data formats for OES (I)

Motivation and objectives

- Lack of a standard method for describing the key characteristics and attributes of Ocean Energy technologies:
 - Makes it difficult to impartially analyse innovative designs.
 - Renders impossible to objectively compare competing technologies.
 - Hinders knowledge sharing activities.
 - Can lead to misuse of limited funding and resources.
- The **Digital Representation** aims to:
 - Provide a common language and architecture for storing project information.
 - Facilitate data and information exchange.
 - Enable objective comparisons between various technologies.
 - Enhance the ability of sector stakeholders to work collaboratively.


2. Standard data formats for OES (II)

Methodology General Concept Dissemination & User Training Consultation **Practical** Concept Development Implementation



2. Standard data formats for OES (III)

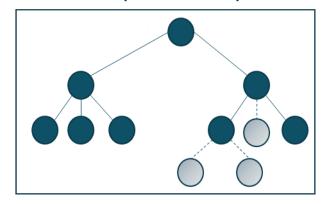
Digitalisation in other sectors

Construction sector: Digital objects/twins over the project lifetime

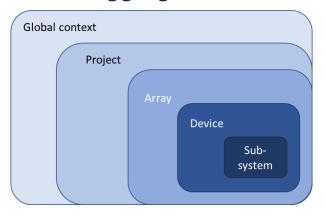
Wind sector: Guidelines for a common conceptual architecture for wind turbines and plants

2. Standard data formats for OES (IV)

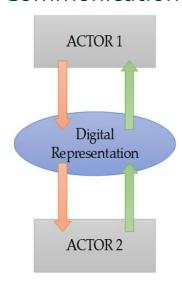
Four guiding principles


Flexibility

LOW COMPLEXITY (Early stage)


MEDIUM COMPLEXITY (Mid stage)

HIGH COMPLEXITY (Late stage)

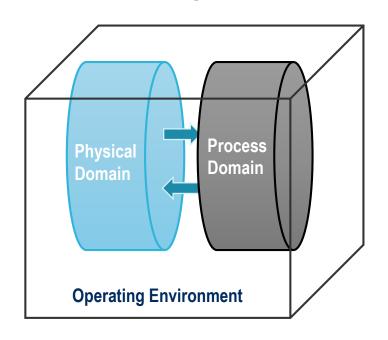

Expandability

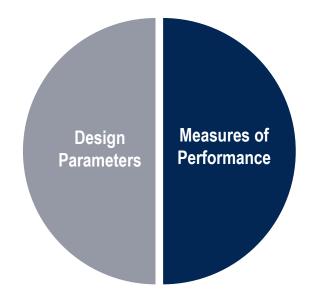
Aggregation

Communication

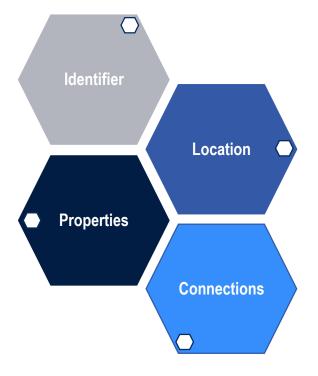
Different levels of data granularity to match technology maturity (TRL) Avoid early obsolescence as the sector evolves and brings in new objects and lower levels of detail Facilitate objective comparisons of individual sub-systems, devices and arrays

Seamless exchange of information among software tools and stakeholders



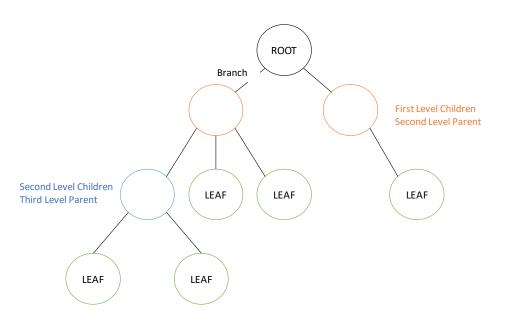

2. Standard data formats for OES (V)

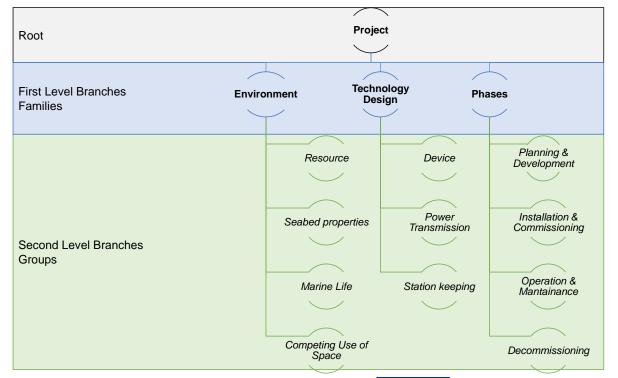
Digital Objects


Three Design Components

Two Model Perspectives

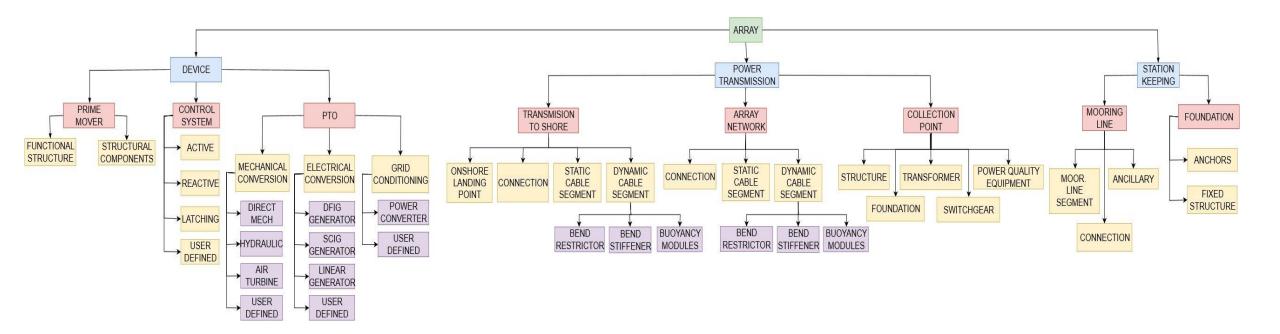
Single Object Structure




2. Standard data formats for OES (VI)

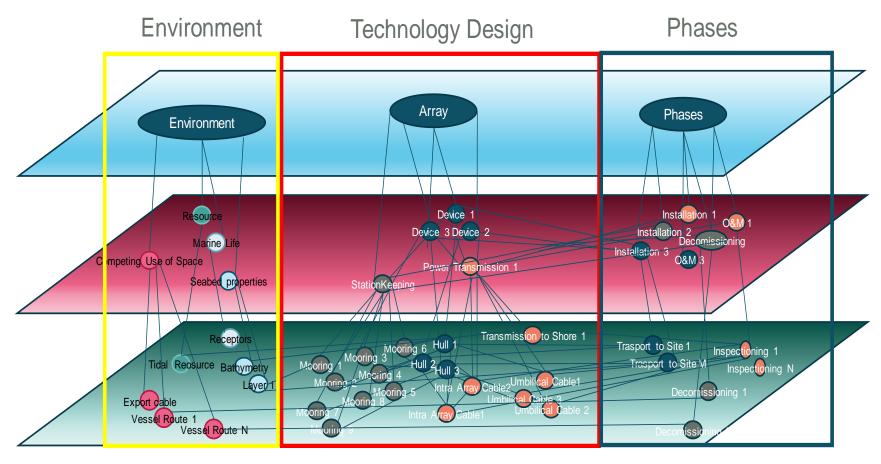
Hierarchical Structure

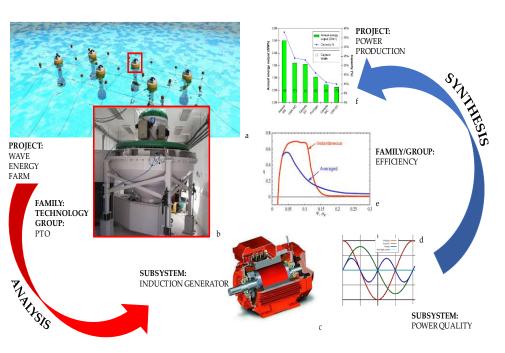
Rooted tree



Ocean Energy Families and Groups

2. Standard data formats for OES (VII)

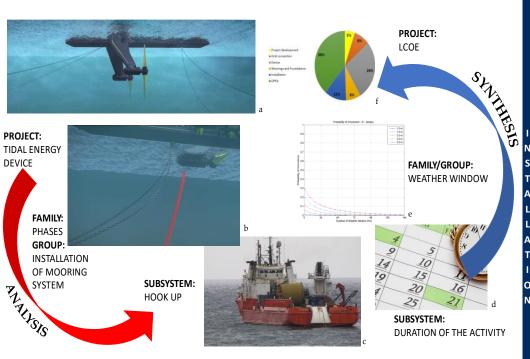

Example of the Technology Design Family


2. Standard data formats for OES (VIII)

Intra- and Inter-relationships

2. Standard data formats for OES (IX)

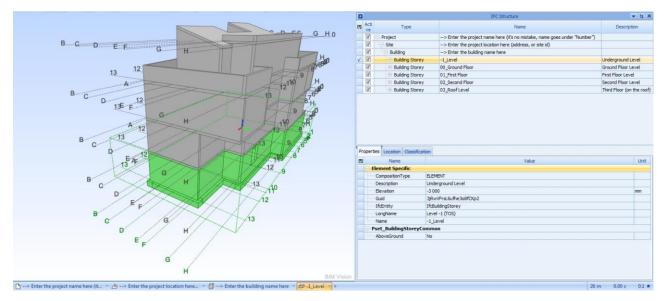
Example of DR for an Induction Generator for the PTO of a WEC


	ID		PTO-1	String
	LOCATION	[x, y, z]	[0,0,0]; [0,0,2]	1D Array
	PHYSICAL A	ND FUNCTIONAL PROPERTIES		
		Type of mechanical	Air Turbine	String
		conversion		
		Number of PTO	2	Scalar
		Type of electrical conversion	SCIG	String
		Type of grid conditioning	Power Converter	String
		Pnom	500 kW	Scalar
		Name Material & weight	Steel & 500 kg	Array
	ASSESSMEN			
		CAPEX	5e4 €	Scalar
		OPEX	1e5€	Scalar
		Failure rate	1e-4 hr-1	Scalar
P		Risk priority number	-	Scalar
Т	HIERACHICA	AL CONNECTION		
0		Part of {Device ID}	Device01	List of
				Strings
		Mechanical conversion {IDs}	Mech01	List of
				Strings
		Electrical Conversion {IDs}	Elec02	List of
				Strings
		Grid conditioning {IDs}	Grid04	List of
				Strings
	CONNECTIO		-	
		Installation of PTO	[Inst01, Inst02,	List of
		{Operation IDs}	Inst03]	Strings
		O&M of PTO {Operation IDs}	[Op1, Op2, Op3]	List of
				Strings
		Decommissioning of PTO	[Dec1, Dec2]	List of
		{Operation IDs}		Strings

	ID		SCG1	String
	LOCATION	[x, y, z]	m	1D Array
	PHYSICAL AN	ND FUNCTIONAL		
s	PROPERTIES			
С		Pnom	250 kW	Scalar
i		Name Material & weight	Steel & 10 kg	Array
G	ASSESSMEN	TS		
		Efficiency	75%	Scalar
G		Cost	1e3€	Scalar
E		Failure rate	0.001	Scalar
N	HIERACHICA	AL CONNECTION		
E		Part of: {Elect.	Elec02	Scalar
R		Conversion ID}		
Α	CONNECTIO	N		
т		Installation of Mech.	Inst1	String
o		Conv {Operation ID}		
R		O&M of Mech. Conv	Op1	String
		{Operation ID}		
		Decommissioning of	Dec2	String
		Mech. Conv (Operation		
		ID}		

2. Standard data formats for OES (X)

Example of DR for the Installation of a Mooring Line for a TEC


		NANAE		Installation of	Chaine
		NAME		Mooring System	String
		TYPE	Installation		String
		START/END			
			Start date	20/02/2020	Date
			End Date	28/02/2020	Date
		DURATION			
			Total Duration	168 h	Scalar
			Duration at Sea	100 h	Scalar
			Duration at Port	15 h	Scalar
			Waiting time	20 h	Scalar
ı			Mobilisation Time	33 h	Scalar
Ĭ			RTS, EQUIPMENT		
N			Type of Vessel		String
5			Number of Vessels	1	Scalar
T			Port	Santander	String
A	1		Other Equipment	-	String
L	1		Operating Limiting Conditions	[1.5,7, -, -]	List of scalars
L	J		[Hs, Tp, Vc, Vw]	[,, ,]	oc o. oculars
Δ	١	ASSESSMEN			
T	1		Downtime Hours [h]	-	Scalar
ı			Vessel/equipment consumption	25	Scalar
C			Vessel Route [list of coordinates]	[0,0], [0,1],, [125,345]	List of coord.
IV	۱		Operation cost	1e5 €	Scalar
			Production of CO2 and other pollutants	1e4	Scalar
			Number of crew/workers	10	Scalar
			Risk of Collision (in case of Vessel operation)	25/100	Scalar
			Underwater nois	24/100	Scalar
	CONNECTION WITH PHASE				
			Is Part of {Operation ID}	-	List of strings
		CONNECTIO	N WITH TECHNOLOGY DESIGN		Ü
			Technology (ies) involved	Moorign1-	List of strings
		CONNECTIO	N WITH SITE		
			Id of the Time Series	TimeSeries1	List of strings

ID	HOOK-01	-	String
NAME	Hook up of Mooring System	-	String
TYPE	Hook up		String
START/END			
	Start date	22/02/2020	Date
	End Date	22/02/2020	Date
DURATION			
	Total Duration	8 h	Scalar
	Duration at Sea	8 h	Scalar
	Duration at Port	- h	Scalar
	Waiting time	- h	Scalar
	Mobilisation Time	- h	Scalar
VESSELS, PORTS,	EQUIPMENT		
	Type of Vessel		String
	Number of Vessels	1	Scalar
	Port	Santander	String
	Other Equipment	-	String
	Operating Limiting		
	Conditions [Hs, Tp, Vc, Vw]	[1.5,7, -, -]	List of scalars
ASSESSMENTS			
	Downtime Hours [h]		Scalar
	Vessel/equipment		
	consumption		Scalar
	Vessel Route [list of coord.]		List of coord.
	Operation cost	1e5€	Scalar
	Production of CO2 and other		
	pollutants	-	Scalar
	Number of crew/workers	10	Scalar
	Risk of Collision (in case of		
	Vessel operation)	25/100	Scalar
	Underwater noise	24/100	Scalar
CONNECTION WI	TH PHASE		
	Is Part of {Operation ID}	INST-01	List of strings
CONNECTION WI	TH TECHNOLOGY DESIGN		
	Technology (ies) involved	Moorign1-	List of strings
CONNECTION WI	TH SITE		
	Id of the Time Series	TimeSeries1	List of strings
~ * ^			

2. Standard data formats for OES (XI)

Practical implementation in DTOceanPlus

- XML and JSON file formats are being considered
 - Widely used (e.g. BIM)
 - Human readable
 - Provide a schema that can be tailored (= future expandability)
 - Ensure document consistency and validity
- One main file with reference to external files (in their native format, e.g. cvs, pdf, ...)
 - Stored in the same directory, or
 - Packed together in self-extractable archive

	☐ Building	> Enter the building name here	
V	Building Storey	-1_Level	Underground Level
1	⊕ Walls		
7			
V			
7	⊕ Stairs		
7	⊕ Grids		
	D. D. data - Channel	no considera	Control Class Lavel

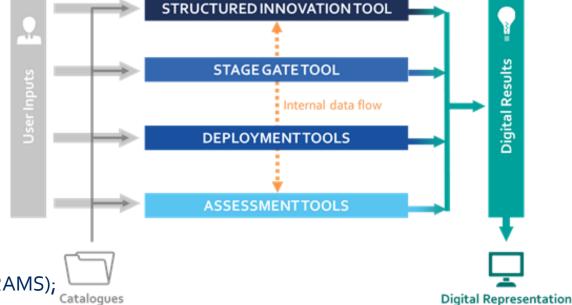
Images courtesy of

https://www.engipedia.com/revit-organizing-template-ifc-export/

3. Summary and future work (I)

Standard representation of data formats for OE Systems to:

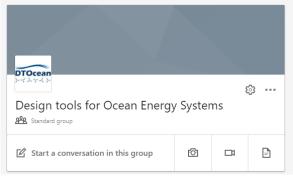
- Provide a common language and architecture for storing project information.
- Facilitate data and information exchange.
- Enable objective comparisons between various technologies.
- Enhance the ability of sector stakeholders to work collaboratively.

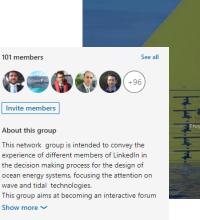

Digital objects:

- Integrate in a single structure two model perspectives (physical design and assessment) for three different design elements (environment, physical entities and processes)
- Hierarchical structure to allow future expandability and different levels of aggregation and complexity.
- Connectivity to represent the inter- and intra-relationships between instantiated objects.

3. Summary and future work (II)

- The Digital Representation will be built in practical terms during the implementation of the different tools and modules of DTOceanPlus:
 - Structured Innovation Tool (SI).
 - Stage Gate Tool (SG).
 - Deployment Tools:
 - Site Characterisation (SC);
 - Energy Capture (EC);
 - Energy Transformation (ET);
 - Energy Delivery (ED);
 - Station Keeping (SK);
 - Logistics and Marine Operations (LMO).
 - Assessment Tools:
 - System Performance and Energy Yield (SPEY);
 - System Lifetime Costs (SLC);
 - System Reliability, Availability, Maintainability, Survivability (RAMS);
 - Environmental and Social Acceptance (ESA).
- ... and tested with data from real case technology projects




3. Summary and future work (III)

- The concept of the Digital Representation will be presented to stakeholders during a set of dissemination and training actions:
 - Conferences such as EWTEC 2019 or ICOE2020
 - Scientific publications
 - Webinars and tutorials

dtoceanplus.eu

Online forum LinkedIn Group

4. Reference Material

Advanced Design Tools for Ocean Energy Systems Innovation, Development and Deployment

Deliverable D7.1

Standard Data Formats of Ocean Energy Systems

Lead Beneficiary Tecnalia
Delivery Date 29/10/2019
Dissemination Level Public
Status Released
Version 1.0

Keywords Data formats, Digital Representation, Ocean Energy Systems

Deliverable <u>D7.1</u> "Standard Data Formats of Ocean Energy <u>Systems"</u> of the DTOceanPlus project is a report, collecting the outcome of the work carried out during task T7.1 of the project, aiming at fully describing the data used for a generic ocean energy system design in a structured manner.

Section 6 (Annex) contains the full list of data structures for the Digital Representation of Ocean Energy Systems

Document Information

Grant Agreement Number	785921
Project Acronym	DTOceanPlus
Work Package	WP7
Related Task(s)	T _{7.1}
Deliverable	D _{7.1}
Title	Standard Data Formats of Ocean Energy Systems
Author(s)	Vincenzo Nava, Miren Josune Sanchez-Lara, Pablo Ruiz-Minguela (Tecnalia), Donald R Noble, Anup Nambiar (UEDIN), Inès Tunga (ESC), Jonathan Hodges, Jillian Henderson (WES), Neil Luxcey, Rocio Isorna, Emma Araignous, Georges Safi, Nicolas Germain (FEM), Francisco Fonseca (WavEC), Francesco Ferri, Yi Yang (AAU), Nicolas Relun (EDF), Frederic Pons (OCC)
File Name	DTOceanPlus_D7.1_Standard_Data_Formats_of_OES_Tecnalia_201 91029_v1.o.docx

Advanced Design Tools for Ocean Energy Systems Innovation, Development and Deployment

Thank you – Questions?

Vincenzo Nava, Pablo Ruiz-Minguela

Disclaimer: This presentation reflects only the author's views and the Agency is not responsible for any use that may be made of the information contained therein.

