

17-Nov-20 Tidal blades and rotor

Design and improvment

- 1. quick presentation of Sabella
- 2. Current blade and rotor
 - Design
- 3. Next blade and rotor

Quick presentation of Sabella

2008 | D03-30 kW

1st tidal turbine installed in France during 12 months

2015 | **D10-1000 kW** 1st tidal turbine to supply electricity to the French grid

Current Blade & rotor design & manufacturing

Current blade and rotor

Design

- 6 blade rotor
 - small diameter (10 m) for high power (1 MW)
 - high torque at low speed
 - self starting at low flow velocity

• Symmetric blades

- Reduced performance (slightly)
- But no need for yaw nor pitch

tank test

Current blade and rotor

Manufacturing

- carbon fiber composite
- 3 main parts : spar, blade shape, winglet
- Fixed to the hub with steel flange
- 2 process used : pre-preg for spar, infusion for blade shape

implementation by race boat manufacturers

strain gauges

On going studies, next design

2D section performances

Site with shallow water \rightarrow cavitation risk

foil shape with low Pressure coefficient (Cp min), keeping high Lift/drag ratio

 \rightarrow not an easy task with symmetric foil.

European project: RealTide

Goal:

Advanced monitoring, simulation and control of tidal devices in unsteady, highly turbulent realistic tide environments

- ightarrow To better design the rotor, lower its cost, reduce environmental impact
 - Novel material (fibres and resins)
 - Evaluation of real turbulent loads
 - Design/manufacture/test a blade

European project TIGER

Goal of the project

New technologies development and implementation on real site, increase performances and lower its cost

Goal for SABELLA's rotor

Use of a pitch system

To reduce loads To increase Energy production To evaluate failure rate

Evaluate real wake impact on rotor performance

sabela

Merci de votre attention

7, rue Félix Le Dantec 29000 Quimper – FRANCE +33 2 98 10 12 35 – www.sabella.bzh

