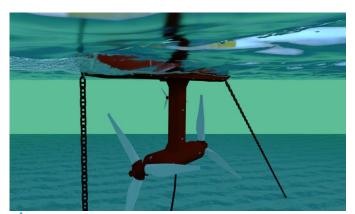
Magallanes Renovables
- Challenges and
opportunities for tidal
energy

September 08th 2021, ETIP Ocean & NEMMO Innovative materials for ocean energy

Mario Iglesias, Magallanes Renovables

Tidal Energy

Technical Challenges of Tidal Turbines.



Reliable technologies

Cable&Moorings

Key Aspects of Magallanes Tidal Turbine.

A full-scale 1:1 size prototype TRL7 was manufactured and it is currently operating at Fall of Warness in EMEC (Scotland).

3.500MWh/year
Pre-certification process.
Easy access maintenance
Antifouling

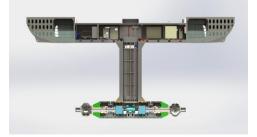
Current 270º pitch 8,5 m length Efficient shape

4 moorings 700tn

Dynamic cable center

Seabed connection

Challenges in NEMMO project


Fine Tuning of the Control Systems to increase production and performance.

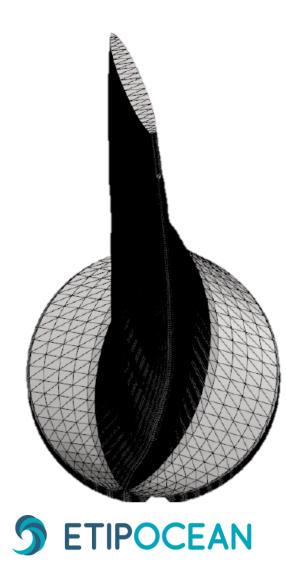
Replicability prediction

Reduce loads in the mechanical system.

Improve life and performance of the blades due to ageing and biofouling growth

Explore 34 MW and 100MW Tidal Farms

Reduce capital and operational costs



Blades Challenge

In this project we focus in the blades and the all improvements necessary to develop

- 1. Different shape to work in both
- 2. Better performance
- 3. Easier com/decom process with dives
- 4. New and better antifouling
- 5. Sensoring in the blades

Thank You for your attention.

September 08th 2021, ETIP Ocean & NEMMO Innovative materials for ocean energy

Mario Iglesias, Magallanes Renovables

