Innovative materials for ocean energy: latest advances from ETIP Ocean & NEMMO

September 8th, 2021

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

🕼 салое

European Technology & Innovation Platform for Ocean Energy

Objective

The **NEMMO** project seeks to generate the necessary **models**, **knowledge**, **designs** and **testing procedures** to develop **larger**, **more efficient and more durable composite tidal turbine blades**.

New materials for blades

Blade Composite

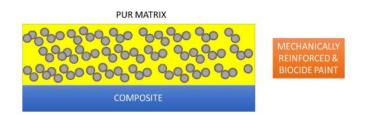
Blade Coating

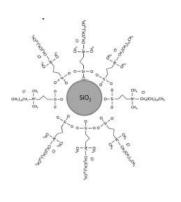
 Nano-enhanced material for fatigue and resistance composite

higher

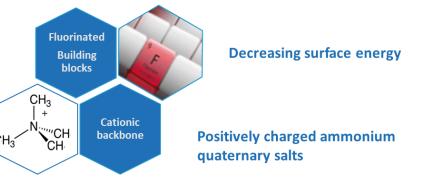
Increased fouling resistance

• Metal-like cavitation resistance

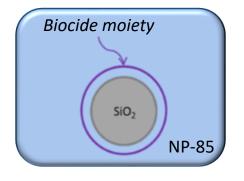


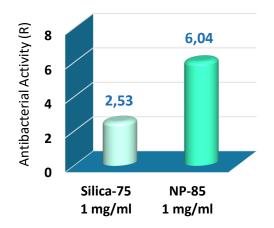


WP3. Nano-reinforced composites, anti-fouling coatings and antifouling bio-mimetic surfaces

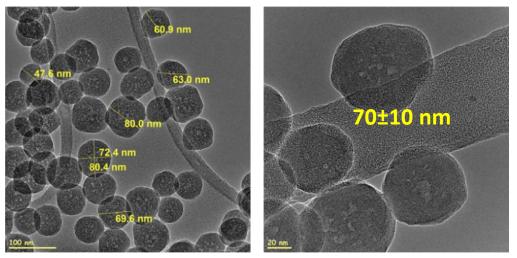

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings

Biocide functionalised silica nanoparticles


Highly crosslinked PUD containing cationic copolymers and particles for cavitation and antifouling resistance



Task 3.3.1. Development of biocide functionalised silica nanoparticles

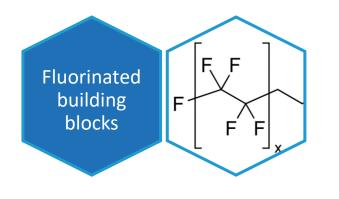


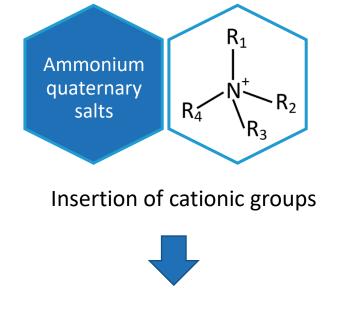
Antibacterial activity of nanoparticles against Staphylococcus aureus bacteria:

R (log) vs S.aureus

Transmmision Electron Microscopy (TEM):

Nanoparticles	DLS (nm)	TEM (nm)
NP-85	85	70±10

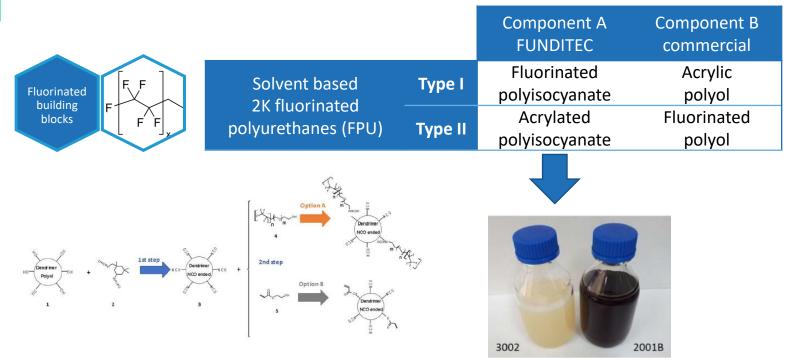

Functionalized nanoparticles presented high antibacterial activity.



Task 3.3.2: Development of highly crosslinked PUD for cavitation and antifouling resistance

• Synthesis of biocidal elastomeric polyurethanes by two strategies:

Decreasing the surface energy

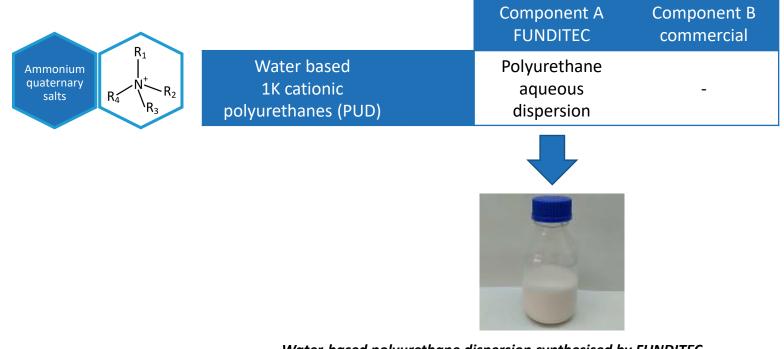


Solvent based 2K fluorinated polyurethanes Water based 1K cationic polyurethanes

FUNDITEC

Task 3.3.2: Development of highly crosslinked PUD for cavitation and antifouling resistance

Acrylated (letf) and fluorinated (right) polyisocyanates synthesised by FUNDITEC


Physical properties of 2K FPU coatings applied on CANOE composite substrates

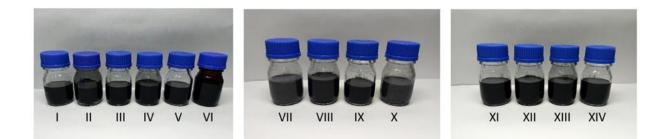
Code	Hardness	Adhesion	Tg (°C)
Туре І	Н	5B	23,8
Type II	4H	5B	28,8

Task 3.3.2: Development of highly crosslinked PUD for cavitation and antifouling resistance

Water-based polyurethane dispersion synthesised by FUNDITEC

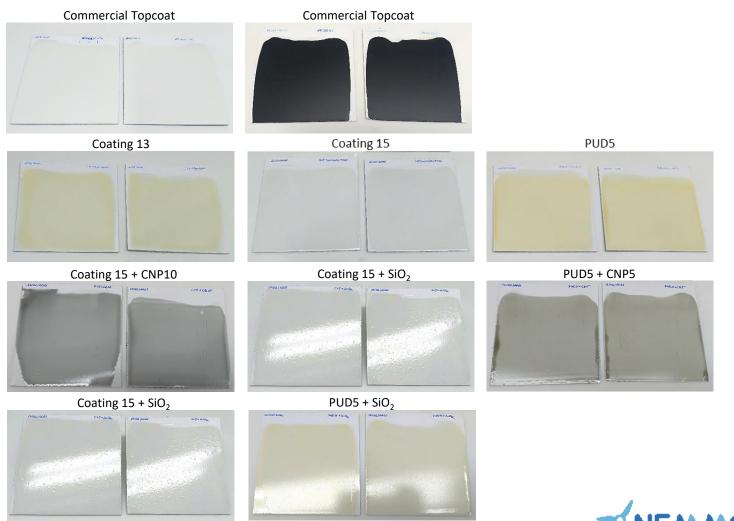
Physical properties of 1K PUD coatings applied on CANOE composite substrates

Code	Hardness	Adhesion	Tg (°C)
Coating PUD	5H	5B	44,6


Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings

• Incorporation of nanoparticles into the polyurethane matrix Incorporation of functionalised silica nanoparticles: Silica NPs (1%wt) + component B of the 2K coatings or + 1K water-based PUD.

Incorporation of carbon nano-complexes:


Carbon nano-complexes (SP1 protein and different nanoparticles:MWCNT, SWCNT, graphene and CB) + 2K and 1K coatings.

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings

• Application of coatings on composite substrate

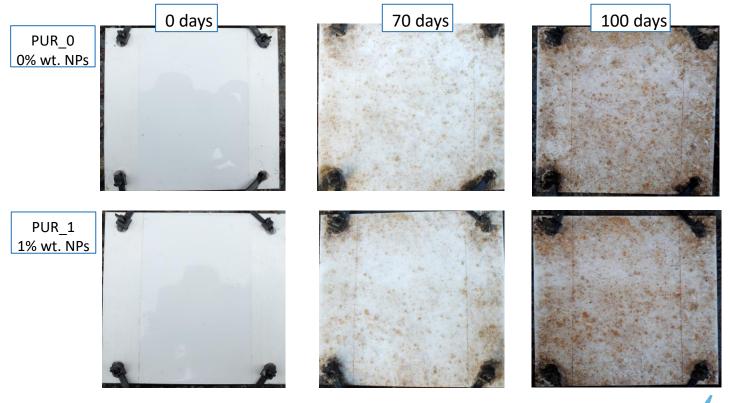
Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings

TESTS: biofouling and cavitation resistance

Tecnalia's Harshlab facility

Tecnalia's Pasaia Port

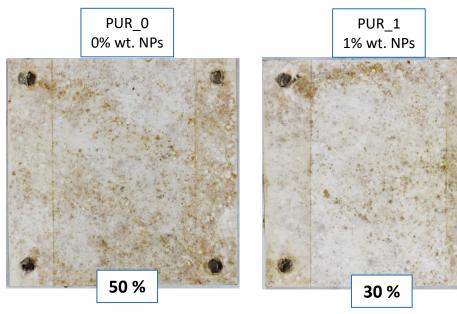
FUNDITEC's Set-up of cavitation erosion test



Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings. TEST RESULTS

Biofouling resistant by exposure on sea immersion conditions (Port of Pasaia).

Composites + gelcoat + PUR with NPs (100 °C/1h)



Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings. TEST RESULTS

Biofouling resistant by exposure on sea immersion conditions (Port of Pasaia).

ASTM D6990-05 "Standard Practice for Evaluating Biofouling Resistance and Physical Performance of Marine Coating Systems".

Ref.	Substrate	NP-85 (% wt.)	% Fouling
PUR_0	Composite + Gelcoat	0	50 %
PUR_1	Composite + Gelcoat	1	30 %

The percentage cover of fouling was reduced 20 % compared to control system without nanoparticles

FUNDITEC

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings. TEST RESULTS

Lab cavitation erosion tests (visual evaluation)

Code	0 min	1 min	2 min	3 min	4 min	5 min	% mass loss	Adhesion	Hardness	
Commercial topcoat white	сğ						2,0286	ОВ	В	•
Commercial topcoat black		Q		5			2,5881	ОВ	В	•
Coating 13	<i>P</i> .				0		0,6385	5B	Н	•
Coating 15						D	0,0187	5B	4H	
Coating 15 CNP							0,0350	5B	4H	•
Coating 15 SiO₂			N. A.P	1. 1 A. C.	Q 5.4%	ale al	0,0813	5B	4H	
PUD5							0,0175	5B	5H	•
PUD5 CNP						the state	0,1576	5B	5H	
PUD5 SiO2							0,0415	5B	5H	

- Improved erosion resistance,
- Better adhesion and hardness compared to commercial ones.
- PUD5 and coating 15 are more resistant to erosion than coating 13.
- Incorporation of carbon and silica NP has no effect on erosion resistance, adhesion or hardness values.
- Best topcoats: Coating15 and PUD5.

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings.

Coatings and composites are currently being evaluated for testing:

- Ageing resistance (natural and artificial ageing)
- Fatigue and impact resistance
- Anti-fouling performance in dynamic conditions
- Cavitation wear tests

Thank you for your attention!

FUNDITEC

Gemma Berriozabal Solana Ph. D

Cecilia Agustin Saenz Ph. D

Monika Tannenberg M. Sc

Sònia Sabaté M. Sc

Dulce Muñoz Ph. D

dmunoz@funditec.es

www.nemmo.eu

🔰 <u>@Nemmo_Project</u> 🔀 <u>info@nemmo.eu</u>

