

WESE

WAVE ENERGY IN SOUTHERN EUROPE

Development of models and tools for the identification of the most suitable areas for the development and deploying of wave energy projects

13th – 14th October 2021

CTN

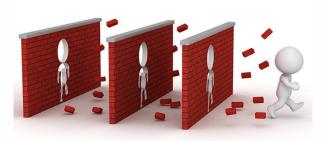
WESE project is co-funded by the European Climate, Infrastructure and Environment Executive Agency (CINEA)

Scientific partners

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

CTN

Industrial partners



This project has been funded by the European Union

The main objective of WESE project is to contribute to overcome the non-technological barriers that could hinder the future development of Wave Energy (WE) in EU

WESE Project

(1) Environmental risk and uncertainty about the potential environmental impacts of WE developments

Monitoring:

- (i) Underwater noise
- (ii) Seafloor Integrity
- (iii) EMF

Modelization:

- (i) Underwater noise
- (ii) Marine dynamics
- (iii) EMF

Sharing data:

WESE Project

(3) Complex and long environmental consenting processes

WESE Project

(3) Need of a Maritime Spatial Planning (MSP) approach

Ecological assessment and maritime spatial planning tool

ssessment e spatial

WEC-ERA tool https://aztidata.es/wec-era/

VAPEM tool https://aztidata.es/vapem/

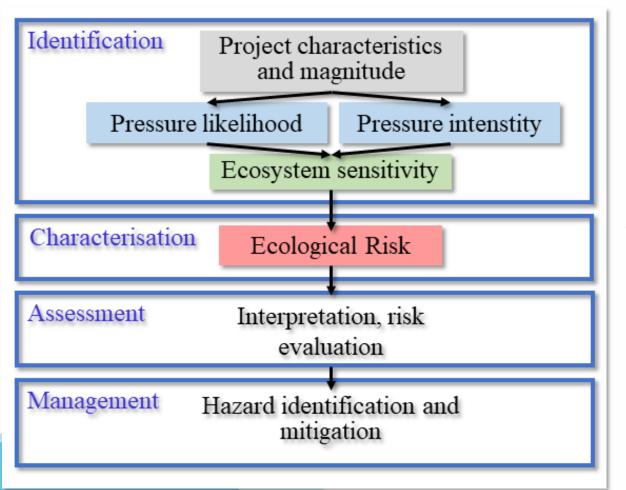
Introduction

The main **non-technological barriers** in the development of Wave Energy Converters (WECs):

- (i) The uncertainties regarding **environmental impacts** and the risks of wave farms.
- (ii) Potential **competition and conflicts** with other marine users.
- (iii) Complexity of the **consenting process**.

Development of Decision Support Tools in the framework of Marine (or Maritime) Spatial Planning (MSP) approach

WEC-ERA tool: https://aztidata.es/wec-era/


VAPEM tool: https://aztidata.es/vapem/

Ecological Risk Assessment (ERA)

Methods

Adaptation of the ISO 31000 standard for risk management and risk assessment techniques, for an **ecosystem-based**, risk management approach

Full ecosystem elements

- •16 pressure types
- •27 ecosystem elements

Adopted from Marine Strategy Framework Directive (MSFD)

Developed for:

- •3 technology types
- •3 life-cycle phases

Ecological Risk Assessment (ERA)

Methods

Scientific literature review:

Limited scientific evidence of quantitative environmental impacts produced by wave energy converters

	Nº of	N ^o of papers	
Search terms	Scopus	Science Direct	
wave energy AND environmental impact	239	2,236	
wave energy AND ecological impact	17	376	
wave energy AND environmental risk	12	208	
wave energy AND ecological risk	3	62	

Alternative:

An expert consultation process

Ecological Risk Assessment (ERA)

- **7,776 risk indicators** (16 pressures x 27 ecosystem elements x 3 technologies x 3 phases x 2 (likelihood and magnitude of impacts))
- 7,776 values of uncertainty
- **432** indicators of sensibility of ecosystem elements to pressures (16 x 27)

Difficult to use due to the amount of data

Development of an online free access web app tool for the assessment of ecological risks of wave energy projects

WEC-ERA tool

https://aztidata.es/wec-era

Results

Detailded description of the expert consultation process

Analysis performed and tool development

A new framework and tool for ecological risk assessment of wave energy

converters projects

I. Galparsoro^{a,*}, M. Korta^a, I. Subirana^{b,c}, Á. Borja^{a,d}, I. Menchaca^a, O. Solaun^a, I. Muxika^a, G. Iglesias^{e, f}, J. Bald^a

https://doi.org/10.1016/j.rser.2021.111539

Results

- WEC-ERA framework is not spatially explicit
- It has been integrated into a model (bayesian belief network)
- GIS information layers have been collated to produce spatially explicit assessments

Conceptual model for the identification of the most suitable areas for the development and deploying of wave energy projects

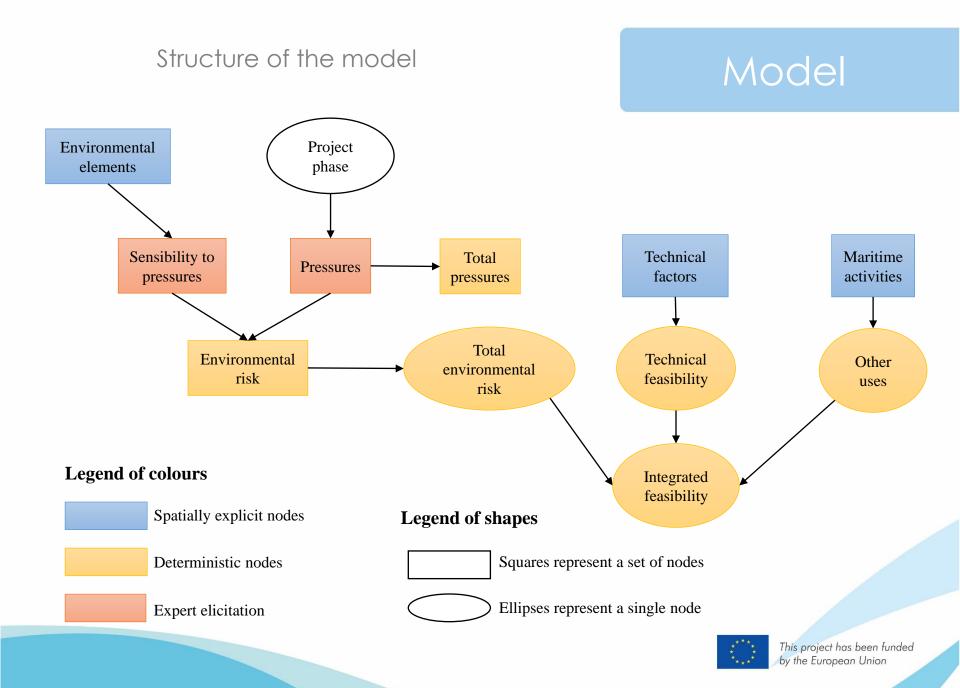
> (spatial) management, Strategic Environmental Assessment, decision making, consenting, MSP

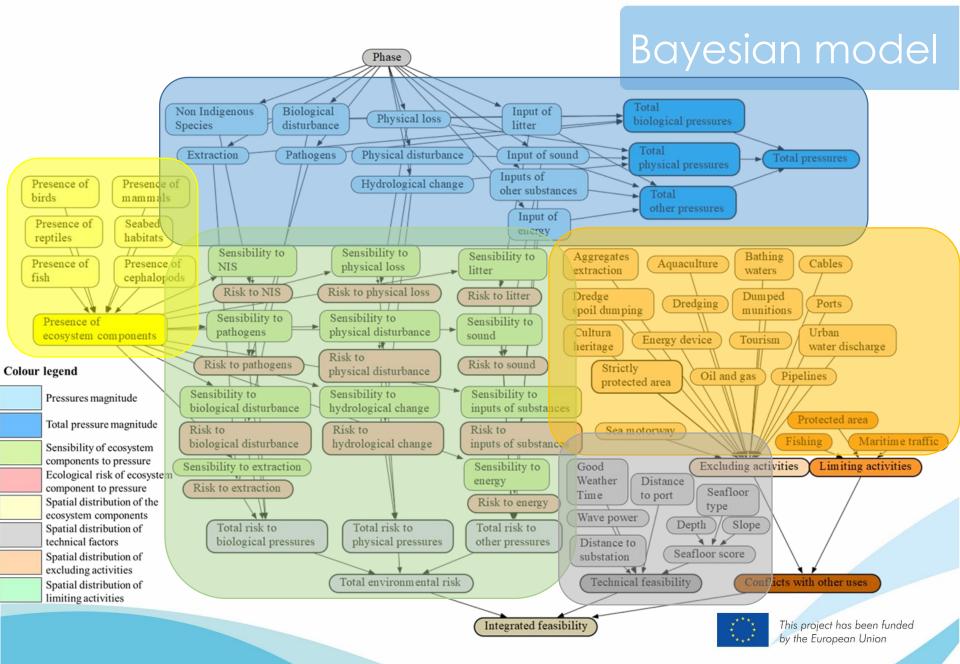
Environmental risk assessment

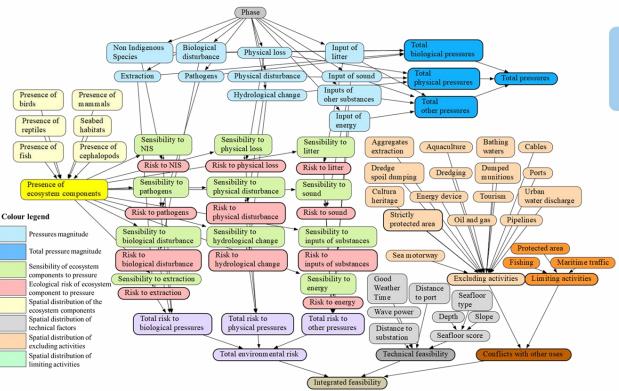
Assessment of pressures and impacts

Integrated risk assessment

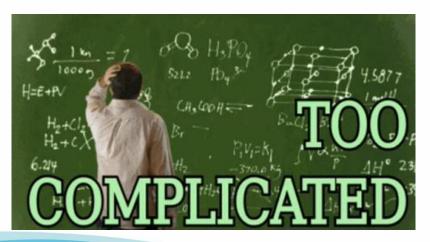
Suitability assessment


Socioeconomic risk assessment


Conflicts with other uses (i.e. limiting and excluding),


Technical risk assessment

Energy resource Good weather periods Distance to substation Distance to harbours Seafloor type Seafloor slope Depth


> Fject has been funded European Union

Bayesian model

Too complex for most of the targeted end users

Results

- Decision support tool: Identification of suitable ares for WEC projects
- Inteface between complex models and GIS layers
- Free access, publicly available
- Software licenses are not needed

Move towards an integrated understanding of maritime activities and their links to the ecosystem

planning tool

This tool provides a user-friendly environment to explore complex models, define management scenarios and visualize maps, making it especially useful for managers and decision makers

https://aztidata.es/vapem

Conclusions

- A new framework for integrated assessment of ecological risks of wave energy converters is proposed
- A model has been developed for the renewable projects site identification according to technical, environmental and conflicts of use criteria
- Two publicly available web app **tools** have been developed to promote the informed decision-making and management

Conclusions

- Contributes to the legal requirements. Information could be used for the Strategic Environmental Assessment of projects within planning processes (MSP).
- Contributes to **Risk Retirement** for Environmental Effects of Marine Renewable Energy
- Could be used to inform **permitting** (consenting) processes that will enable deployment of Wave Energy Converters.
- Definition of **management scenarios and tradeoff analysis** that could be used during stakeholder **consultation** processes.

Thank you very much for your attention!!!

Feedbacks are welcome!!!

Ibon Galparsoro Iza igalparsoro@azti.es

